
AD-AL03 102 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/0 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVELOPME-ETC(U)
FEB 77 P 5 FISHER, F J MARYANSK! OAA029-76-6-OIB

UNCLASSIFIED CS-77-5 NL

EEEEEEEEEI.EI

AIRMICS Army Institute tor Research in 313 Calculator Bldg.
Management Information and GA Institute of Technology
Computer Science Atlanta, GA 3032

Technical Report

o RESEARCH IN FUNCTIONALLY
le DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT

Kansas State University

Virgil Wallentine

Principal Investigator

A
Approved for public release; distribution unlimited

VOLUME XIX

ROLL-BACK AND RECOVERY IN DISTRIBUTED
>DATA BASE SYSTEMS

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

, , 1

. ..iI I i ' I l i 1 . . . ' l ; -i l

UNCLASSI1FIED
SECURITY CLASSIO-ICATION Of THIS PAGC e kJE im.I e

REPORT DOCUMENTATION PAGE HEPO(RF CflMPLETI?.C. FORMC...~ 1.GOVTACCESSI NMO. 3. RECIPII:NT'SCATALOG NUMBER

"I X-PAREABM"WO NT RERSUME

I. PERORMLING OGAIZATINM AND ADDRESS PRGA IL96TQJC.TS

US Army Research Office fF bp-7
P 0 Box 12211 NUOW OF. Puimo AEV-

Research Triangle Park, NC 27700 19 Dases
_t.MONITORING AGENCY NAME & ADORESS(If ditt1f.. w ,arEM G 10 8160) IS. SECURITY CLASS. (.1 hi. mpI)

US AmCoptrSystems Command Ucasfe
Attn: CSCS-AT Unclassified

Ft. Delvoir, VA 220601"W NFWT0M7DoGRCP.

IS. DISTRIBUTION STATEMENT (of Chad Repad~~~

Approved for public release; distribution unlimited.

17. OfSTRIBUTION STATEMENT (.I ho aboft..-. .lomd In Block a. i0, .t u RWK)

1S. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

IS. KEY WORDS (C-.nn.~. on me~ae si. it nec.soeaid .,dontfir 6y block inuv~)

DDEMS

I20. ABSTRACT (C..uiwff -roh.e l.i ~ew ~ IdMIo Sp hieh .abn)

-over-

OD 47A?)~ 3 EDI TION OF NOV .9 IS OBSOLETE Unclassified

INCRIYCLSICAIONO HSPG W-016Ia-

-' '-'~,.

SgCUONTtv Cl..ASIC&TOW OF T41% PA4 (UW.. 00if • •(090

-A38MACT-

-'On* of the major obstacles to the widespread
development and utilization of distributed data base
management system* is the lack of an efficient recovery
technique. A methodology is presented here for recovery of
distributed data bases. The central operation of the
recovery technique is rollback of a data base application
task on the processor which controls access to the data.
The rollback procedure restores the data base to its
original state prior to the execution of the application
task and determines the set of applications tasks which may
have been effected by that task. Tasks that have not
operated upon data altered by tasks being rolled back are
not affected by the procedure. The rollback procedure
attempts to minimiie the the time and space requirements for
recovery.

4.i . ..

UNCLASSIflt

wSURtTV CLAMI"IC*TO OF TNI PA-45[OV3 ON- b

ROLLBACK AMD RECOVERY IN

DISTRIB TED DATA BASE MANAGEMENT SYSTEMS 1

Technical Report CS 77-05

Fred J. Maryanski

Paul S. Fisher

Computer Science Department
-- ,-

Kansas State University
1,

Manhattan, Kansas

66506 .. .

February, 1977

I The work reported herein was supported

by the United States Army Computer Systems

Command, Grant No. DAAG 29-76-G-0108.

* r

Abstract

* One of the major obstacles to the widespread develop, nt and utiliza-

tion of distributed data base management systems Is the lack of an efficient

recovery technique. A methodology is present here for recovery of distiibuted

data bases. The central operation of the recovery technique t rollback of

a data base application task on the processor which controls access to the

data. The rollback procedure restores the data base to its original state

prior to the execution of the application task and determines the set of

application tasks which may have been effected by that task. Tasks that have

not operated upon data altered by task being rolled back are not affected by

the procedure. The rollback procedure attempts to minimize the time and

space requirements for recovery.

1. Introduction

Distributed data base management systems (DDBMS) have the potential to

make a significant impact on the way data is viewed and processed. The ability

to easily and safely access data controlled by several different computers has

been a long standing goal of workers in the data base area. Progress toward

this goal has accelerated rapidly in both academic and industrial environments.

However, many problems still require efficient solutions. One of these problem

-areas that can have a significant performance impact is rollback and recovery,

which is the topic of this paper.

1.1 Distributed Data Base Management Systems

Many forms of distributed data base management systems have been

studied [1-7). All distributed data base configurations can be described as

a collection of host, back-end, or bi-functional machines. A host machine is

a processor which executes data base application tasks. The data base operations

requested by a host machine are then performed by a back-end machine. A

bi-functional machine contains software to carry out both the host and back-end

functions. Figure 1 illustrates a DDBMS with host, back-end, and bi-functional

processors.

1.2 Recovery in a DBMS

The recovery mechanism is essentially the same in all single machine

data base management systems. During the execution of the data base application

tasks, all data base requests are logged on a journal file (usually a tape).

Whenever a data base request results in a modification to the data base, the

effected pages are written onto the journal file in both before and/or after

images. If a point of inactivity is reached in the processing of the data base,

a checkpoint dump of DBMSprimary memory is taken. All journal and checkpoint

HOST HOST

1 m

DATA BASE DATA BASE DATA BASE

Figure 1

Distributed DBMS

information must be time stamped to insure proper sequencing of the recovery

operation, which is implied by the relative position of data in the single

nachine case.

If an application task should terminate abnormally, its effect on the

data base must be removed. It is possible in an interactive environment that

data written by the terminating application task may have been used by other

tasks which in turn performed additional modifications to the data base.

This phenomenon of an application task using incorrect data to produce additional

incorrect data can have a cascading effect throughout the data base with a

large number of application tasks potentially operating with invalid information.

Currently, most DBMS users avoid this problem by doing updates in a batch mode

; a specified time and allowing only interactive query.

In order to undo the effect of an abnormally terminating task on the

data base, a rollback procedure is necessary. The rollback procedure restores

the data base to its state prior to the initiation of the erroneous application

task. The precise form of a rn'lback procedure varies with the organization

and environment of the DBMS.

In the simplest case if the run time unit of the DBMS is single threaded

and operates in a batch environment, then the data base can be restored from

ze checkpoint taken prior to the initiation of the task.

In the more complex case if the run time unit of the DBMS is multi-

H!zhraded and operates both on-line update and batch tasks simultaneously, then

ine of two basic approaches is possible. The simpler approach is to roll back

aL' tasks which either have executed or are executing to the time of initiation

Oi ,h famiLy task. If this procedure is followed, the integrity of all portions

of the aata base will be preserved, but at a potentially high cost, since it is

possible that tasks which have no interaction with the terminating task may be

rolled back needlessly. The more difficult approach suggests that only proccssc6

I

which themselves have used contaminated data be rolled back. In most castes

this would involve both fever tasks and less data. In either case, the roll-

back procedure has the following basic steps:

1. The data base is restored to the first checkpoint after the initiation
of the faulty task (if a checkpoint has been taken in that time frame).

2. The page images prior to each operation from the checkpoint to task
initiation are written back to the data base. It should be noted that
the page images are applied in reverse order (hence, the term rollback).

Either approach to the rollback of an incorrect application program

will maintain data base integrity at the cost of halting some or all data base

activity. While the integritg of the data base is preserved, there can be no

guarantee that any erroneous information obtained by a user from an application

task that terminated between the initiation of the faulty application task and

the beginning of the rollback procedure can be corrected.

2. The Problem of Recovery and the DDBMS

The distribution of a data base system over several processors increases

the complexity of the recovery problem. Just the interprocessor comunications

overhead can result in more time-consuming rollback operations if several

processors are required to participate. It is also likely to be the case that

within a DDBMS there is a larger number of programs interacting than in a single

cachine system. Hence, the complexity and. effect of any rollback procedure may

na compounded.

7.1 Possible DDBMS Recovery Alternatives

There are three basic approaches to recovery in a DDSMS.

1. Design the data base to permit only controlled or restricted interaction

among application tasks.

2. Extend the single machine recovery mechanism to the distributed system.
This approach would entail rolling back all data bases on all back-end
processors in the system to the point of initiation of the faulty task.

5

3. Use a selective recovery mechanism to roll back only those tasks
which have used data provided by the erroneous or terminated task.

2.2 Analysis of Alternatives

The three approaches to r..covery in a distributed DBMS that are listed

above represent widely differing philosophies. Each approach has merit for

specific types of organizations and data processing facilities. The criteria

used here to evaluate these alternatives are based upon the recovery procedure's

effects upon system throughput, as well as data availability and the degree

of data integrity maintained tithin the system.

The first approach, avoiding integration in the data base, has little

appeal to the designer of a DDBMS, although in practice this might be the most

commonly used technique since many users of data base systems on single machines

feel that avoiding integration is the only reliable means of insuring data

integrity. If this user philosophy were applied to a DDBMS, very inefficient

utilization of the distributed system would result. In order to avoid the need

for a sophisticated recovery mechanism in a DDBMS, two tasks would not be per-

mitted to have simultaneous update capabilities to the same data base. For an

application system under this requirement, the DDBMS recovery problem can be

simplified. An on-line inquiry batch update system would fall in this category.

If the single machine approach is extended to a DDBM, then the entire

data base would be unavailable during recovery. In a system with a large

number of back-end or bi-functional processors, this approach could result in

the recovery of a small portion of a data base preventing usage of a large,

correct segment of the data. The communication process involved with this

technique is that a message must be transmitted to all back-end processors

indicating that recovery must begin and the time of initiation of the faulty

program. This system-wide recovery approach insures that all effects of the

erroneous application program have been removed from the data base. The

main Irawbacks to this method are that access to uneffected portions of the

data base is prevented and that unnecessary rollbacks may occur.

A selective recovery mechanism would overcome the main deficiency of

the system-wide recovery strategy by rolling back only those application

tasks that are operating with tainted data. Overall system throughput would

increase under these circumstances, as would accessibility to the data base.

In order for a selective recovery scheme to be worthwhile, data base

integrity must be maintained. Therefore, the scheme must be .Irtain of

including all tasks that have used incorrect data in the recovery process.

In order to acconplish selective rollback, information on the interaction

between application tasks must be maintained. This interaction information

would take the form of a potential shared data list which can be computed

trom the sub-schemas of the application tasks prior to execution.

The communication overhead which potentially has the most significant

performance effect in a DDBMS must not exceed one transmission to each back-

end processor if the method is to be effective. The computational overhead

involved in a selective recovery strategy must be maintained at a level

where it is not significant in terms of system performance. A selective

- overy mechanism which satisfies the performance requirements listed above

has the potential for better performance in a DDBMS than the recovery schemes

4iicussed previously.

In distributed data base systems which are highly integrated and support

zuli-threaded updating, a selective recovery technique is required if both

performance and integrity are to be preserved.

A Selective Recovery Methodology

The following sections explain a procedure which meets the necessary

lmV

criteria for selective rollback as described above. In addition, some

comments are made concerning the role of the DBA with respect to a DDBMS

system. The procedure is oriented toward a CODASYL-type DB6, although

the same general techniques are applicable to any type of data base system.

3.1 Definition-Time Recovery Processing

As previously mentioned, the proposed selective recovery methodology

for distributed data base systems requires processing at data definition

time, as well as run time. When a new sub-schema is created, a potential

shared data list is computed b intersecting all sub-schemas of that schema.

The potential shared data list indicates record and set types that are in

common with other sub-schemas.

Since each application task invokes exactly one sub-scbema during its

execution, the potential data overlap of any two application tasks can be

determined from their potential shared data lists. In order to maintain

the data overlap information at execution time, the activation of a data

base application task must result in a message being transmitted to all

applications that have the potential to share data with that task. The

message indicates the application task and sub-schema names. The information

relating active application tasks and sub-schemas is maintained in the data

dictionary. When an application task terminates, a simila r message is sent

to all tasks with intersecting potential shared data lists.

Situations may arise in integrated data bases i width application

tasks share record types, but do not operate upon the tnctss of all data

items in the record. A similar possibility is that the appiication task may

access some data items in a read-and-print mode. In either of these situations,

an incorrect value in a data item may not be critical to the function of the

I

program. Rolling back a task due to an incorrect value In a non-critical

daca item would have an adverse effect on system performance.

The identity of non-critical data Items Is heavily application task

dependent and can in no way be inferred from a sub-schema description. Since

the CODASYL specifications 18) do not provide for the identifications of non-

critical data items for recovery purposes, some additional mechanism for their

Identifications must be provided to the data base administrator. The simplest

,pproach would be to maintain in the data dictionary a list of non-critical

data items for each application task.

When sub-schemas are intersected to form the potential shared record

lisC, non-critical data items should be removed from the intersection of the

records. Only those records which intersect on critical data items should be

included in the potential shared data list. Figure 2 illustrates the potential

-.-ared data list for a sample application task, A.

t.2 Logging

The functional back-end processor controls data base access and, therefore,

to the appropriate location to maintain the logs of data base activity. Since

- back-end processor (or a bi-functional machine serving as a back-end) may

'erve a large number of application tasks, the amount of recovery information

. be minimized. Many existing single machine data base systems save the

)Zfore and after images of each page that is altered as a result of a D1U.

:Cacement. For example, in a CODASYL DBMS, changes to set structure can affect

many pages and consequently consume a large amount of file space. In order to

aace the amount of log file space required, an inverse DM rollback technique

,,. be used. The inverse technique requires little primary memory, since for

.. ,e most part existing DML functions can be used to perform the rollback

9

Critical Data Item List

Task Record Items

A r1 d1 d2 d3 d4

A 2 d7 d8

B r I d I d 3

B r2 d 7 d8

C r2 d7 d9 d1 0

D rI d5 d6

D r2 d8 d9 d10

Potential Shared Data List (for Task A)

Task Record

B r1
s .2

C r

D r2

Figure 2

Sample Potential Shared Data List

I

10

operations. Table 1 lists the CODASYL DM verbs, the information that a

back-end processor must save to roll back that verb, and the inverse actions.

Whenever a DML verb is executed by a back-end processor, a log file

entry is written. Figure 3a depicts the format of a log file entry for a

DML verb. Note that the entries hive variable lengths. In additionLto

recording the DML verbs that have been executed, the log file must also

contain restart information on all application tasks. Restart information

identifies a stable point at which an application program can be restarted.

By default, the system will write a restart entry whenever an application task

is initiated. It is also desirable to permit the programmer the ability to

indicate a restart point in a task. The CODASYL specifications do not provide

a facility for this operation. However, UNIVAC's DHS-11O0 has a similar feature

in the LOC verb (9). The format of a restart entry for the log file is shown

in Figure 3b.

Figure 4 gives some sample DML commands and their resultant log file

entries.

In certain cases, particularly a strict retrieval environment, the

logging of read operations may produce a large number of entries on the log

file that will never be applied in any rollback situation. Considerable roll-

1back overhead could be saved if the data base administrator were provided the

option of shutting off the logging facility for retrieval operations on selec-

tive tasks. This could be accomplished at task initiation time.

3.3 Rollback

When the DBMS software on a host processor determinesLthat an application

Lask has terminated abnormally, rollback procedures are initiated. The host

processor notifies all back-end processors for this task that rollback must

.0

11

Effect on Recovery Recovery
Verb Data Base Information Action

ACCEPT None N/A NWA

CONNECT Changes Pointers Record & Sec Names DISCONNECT

*DISCONNECT Changes Pointers Record & Set Names CONNECT

ERASE Removes Record Images of All Erased All Records
and Members Records, Set Memberships

FIND None N/A N/A

FINISH None N/A N/A

MKEK None U/A N/A

GET None N/A N/A

KEEP None N/A N/A

MODIFY Changes Record Old Record Image MODIFY
Contents

ORDER Changes Pointers Set Pointers in Old Reorder Using
Order Old Pointers

READY None N/A N/A

STORE Changes Record Record Name ZRASE
Contents and Pointers

RE4ONITOR None N/A N/A

USE None N/A N/A

Table 1

Recovery Information and Action for UhK Verbs

'a-

12

T T RECORD OCCURRENCE Dm ROLLBACK

I A OR OPERATION INFORMATION
M S SET ID

! E K TYPE

a. IL Verb

1

T T SI A T

M S A
E K I

T

b. Restart Entry

Figure 3

Log File Entries

=Ma

13

Comands Received Ky
Back-End Processors Log File

fTime Command Task Time Occurrence Operation

to Initiate A A to RESTART

t Restart Point-C C t- RESTART

t 2 A: STORE r I A t 2 r I STORE

t3 C: GET r2 C t3 r2 GET

t4 Initiate B B t4 - RESTART

t5 A: MODIFY r2 A t5 r2 MODIFY

t 6 A: MODIFY r A t6 r I MODIFY

t7 Initiate D D t7 RESTART

t8 D: GET r D t r1 GET

t B: GET r B t r GET9 2 9 2

t0 B: GET r2 B tO 2 GET

Figure 4

Sample Los File

AW "

occur and provides the task name, Its Initiation time, its potential shared

data list, and a list of its areas which are open for update as parameters.

The method for identifying the back-end processors for a given task is explained

in Reference 10]. In the ensuing presentation, this task shall be known as

the primary rollback task.

Each back-end processor that receives the rollback message must refuse to

accept any DML operations accessing the areas updated by the terminating task.

Sie fcllowing rollback procedure is then carried out.

1. Read the log file backwards to locate the initiation point of the task.

2. Read the log file forward from that point and perform the following

operations, depending upon the entry on the log file:

a. If the entry is an update entry for the task that is being rolled

back, make an entry in the update list which indicates the record or set

occurrence whose contents have been modified. An entry in the update list

consists of an ordered pair of record or set type and occurrence indentifiers.

Copy this log file entry onto the rollback file.

b. If a MODIFY entry for the task being rolled back alters the contents

o± a record occurrence that was previously MODIFIED (this Is indicated by the

:resence of the record occurrence on the update list), no action is taken with

* espect to either the update list or rollback file. This will insure that an

...dated record is restored only once to its earliest value in the rollback

*.,'ocedure.

c. If an entry for an application task other than the primary roll-

wizk cask references a record or set occurrence for which an update list entry

4| .."±st., and an entry for that task and record or set type exists in the potential

t.ared data list, that task must also be rolled back. Rollback of this task

4ust occur since the task may be operating with incorrect data. The task name

15

and time of this entry are saved in a secondary rollback list.

d. All entries on the log file for tasks in the secondary rollback

list are ignored.

e. All entries on the rollback file for tasks that do not have entries

in the potential hared data list of the primary rollback task are ignored.

f. All entries for non-update DML commands that operate on record or

or set occurrences not in the update List are ignored.

S. Any primary rollback task retrieval entries o the log file are

ignored.

3. When the log file has been processed up to the time of termination,

the restoration of the portions of the data base effected by the primary

rollback task is performed by processing the rollback file In reverse and

executing the rollback actions indicated in Table 1.

4. The log file is read backwardo in order to locate, for each task in

the secondary rollback list, the restart point Imnediately preceding the time

at which the incorrect operation was detected.

5. Messages are transmitted to the host processors for the tasks in the

secondary rollback list, indicating that the tasks should be rolled back to

the specified restart point. The host processors will then suspend those

application tasks and send the appropriate rollback information to the back-

end processors for those tasks.

Figure 5 illustrates the resulting rollback file,update list and secondary

rollback list if the sample application task A of Figure 4 were to be rolled

back. The potential shared data list of Figure 2 is assumed in this example.

Careful observation of Figures 2, 4, and 5 will lead to the following

conclusions:

1. C is not rolled back since it accesses r2 before A updates r2.

2[

16

Rollback File (operations)
Actions

STORE r 1. Task A will be rolled

MODIFY r2
back to time to.

2. rI will be removed from

the data base.

3. r will be restored to

- I r2
2pdat Lis status before time tS

Secondary RollbaCk List

Task Time

L t

Fligure 5

Results of Rolling Back Task A

17

2. D is not rolled back since rI is not in the potential shared data

list (i.e. it Is not a critical record for D).

3. The MODIFY rI command Is not rolled back since it is preceded by a

STORE r1 command.

4. Although it is not explicitly shown in the figures, the GET r2

cotwiand at time t1 0 will be ignored during rollback processing, since B will

have been added to the secondary rollback list after processing the log file

entry for time t .

3.4 Responsibilities of Data B4ue Administrator

The distribution of a DBMS over a computer network enormously complicates

the data base administration function. If a recovery scheme similar to that

proposed in this paper Is implemented, the DRA must make decisions that will

have substantial impact on the time required for recovery. Perhaps the most

Important factors are the distribution of the data across machines and the

amount of data integration. As distribution and integration of data increase,

the data base becomes more accessible to a larger number of users. At the

same time, recovery operations become increasingly complex. This quandry

reduces to the classical data processing tradeoff between flexibility and

efficiency. It is the role of the data base administrator to balance these

two seemingly conflicting factors.

4. Conclusion

The rollback of an application task by a back-end processor is the central

element in any recovery scheme for a distributed data base management system.

In a highly integrated data base, the procedure may have to be repeated several

times until no new secondary rollback lists are generated. Rollback can be

executed concurrently on distinct back-end processors. However. a back-end

• 0 18

processor can rollback only one application task at a time. It Is important

to note that the recovery procedure does not allow for redundant copies of data

at different back-end processors. Although redundancy Is unnecessary in a

truly distributed DBMS, there are certain circumstances in which practical

considerations may justify redundancy [1,31. As In all other situations of

this nature, the DBA must decide on redundancy.

The rollback procedure presented in this paper provides a mechanism

"'or efficient and complete recovery in a distributed data base management

system. The development of an efficient recovery mechanism can have a signi-

ttcena impact on the design and usage of distributed data base systems. One

Lmpurtant design aspect that recovery can impact is deadlock handling. Due

to potential inefficiencies in recovery of distributed data bases, it has

!een argued that deadlock prevention is more efficient than deadlock detection

ior a distributed DBMS [11]. However, an efficient recovery mechanism can

make deadlock detection more attractive.

An efficient and complete recovery technique could provide data base users

with sufficient confidence in a DBMS to allow the formulation of integrated,

distributed data bases. Without that confidence, the progress in distributed

data base systems will be severely impeded by lack of acceptance in the data

.-ocessing environment. The recovery procedure presented in this report is a

ricep coward developing that user confidence in data base systems.

19

Bibliography

1. Aschim, F., "Data Base Networks--An Overview," Management Informatics,
Vol. 3.1, Feb. 1974, pp. 12-28.

2. Baum, R. I. and Hsiao, D. K., "Database Computers--A Step Towards Data
Utilities," IEEE Trans. on Computers, Vol. C-25, No. 12, Dec. 1976,
pp. 1254-1259.

3. Booth, G. M., "The Use of Distributed Data Bases in Information Networks,

Proc 1st International Conference and Computer Communication: Impacts
and Implications, Oct. 1972, pp.-371-376.

4. Booth, G. M. "Distributed Information Systems," Proc AFIPS National
Computer Conference, Vol. 45, June 1976, pp. 789-794.

5. Canaday, R. E. et al., "A*Back-End Computer for Data Base Management,"

CACM, Vol. 17, No. 10, Oct. 1974, pp.575-582.

6. Lowenthal, E. I., "The Back-End Computer," HRI Systems Corp., P.O. Box
9968, Austin, Texas 78766, Apr. 1976.

7. Maryanski, F. J., et al., "A Minicomputer Based Distributed Data Base
Management System," Proc NBS-IEEE Trends and Applications Symposiem:
Micro and Mini Systems, May 1976, pp.113-117.

8. .CODASYL Data Description Language Journal of Development, Document C1362:
1_13, U.S. Government Printing Office, Washington, D.C., 1973.

9. Possum, B. N., "Data Base Integrity as Provided for by a Particular Data
Base Management System," in Data Base Management, Klimbie, J. W. and
Koffeman. IL L. (eds.), North Holland, Apr. 1974, pp. 271-288.

10. Maryanski, F. J., Fisher, P. S., and Wallentine, V. E., "A User-Transparent
Mechanism for the Distribution of a CODASYL Data Base Management System,"
TR CS 76-22, Computer Science Department, Kansas State University, Manhattan,
Kansas 66506, Dec. 1976.

lI. Chu, V. W., and Ohlmacher, G. "Avoiding Deadlocks in Distributed Data
Bases," Proc ACM Annual Conference, Nov. 1974, pp. 156-160.

